继上次实现了 Ping 之后,尝试进入更底层的网络接口层实现局域网的 ARP 报文收发
ARP 协议概述
ARP(Address Resolution Protocol) 地址解析协议是用来通过网络层地址(IP地址)去寻找数据链路层地址(MAC地址)的网络传输协议.
在以太网(Ethernet)协议中规定,同一局域网中的一台主机要和另一台主机进行直接通信,必须要知道目标主机的 MAC 地址。而在 TCP/IP 协议中,网络层和传输层只关心目标主机的IP地址。这就导致在以太网中使用 IP 协议时,数据链路层的以太网协议接到上层IP协议提供的数据中,只包含目的主机的IP地址。于是需要一种方法,根据目的主机的IP地址,获得其MAC地址。这就是 ARP 协议要做的事情。所谓地址解析(address resolution)就是主机在发送帧前将目标IP地址转换成目标MAC地址的过程。另外,当发送主机和目的主机不在同一个局域网中时,即便知道对方的MAC地址,两者也不能直接通信,必须经过路由转发才可以。所以此时,发送主机通过ARP协议获得的将不是目的主机的真实MAC地址,而是一台可以通往局域网外的路由器的MAC地址。于是此后发送主机发往目的主机的所有帧,都将发往该路由器,通过它向外发送。这种情况称为委托ARP或ARP代理(ARP Proxy)。—— 地址解析协议
报文格式
以太网首部: net/ethernet.h
1
2
3
4
5
6
|
typedef struct ether_header {
u_char ether_dhost[ETHER_ADDR_LEN]; /* 目标以太网地址 */
u_char ether_shost[ETHER_ADDR_LEN]; /* 源以太网地址 */
u_short ether_type; /* 帧类型 */
} ether_header_t;
// ETHER_ADDR_LEN 为 6
|
ARP 请求/应答: net/if_arp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
struct arphdr {
u_short ar_hrd; /* 硬件类型 format of hardware address */
#define ARPHRD_ETHER 1 /* ethernet hardware format */
#define ARPHRD_IEEE802 6 /* token-ring hardware format */
#define ARPHRD_FRELAY 15 /* frame relay hardware format */
#define ARPHRD_IEEE1394 24 /* IEEE1394 hardware address */
#define ARPHRD_IEEE1394_EUI64 27 /* IEEE1394 EUI-64 */
u_short ar_pro; /* 协议类型 format of protocol address */
u_char ar_hln; /* 硬件地址长度 length of hardware address */
u_char ar_pln; /* 协议地址长度 length of protocol address */
u_short ar_op; /* 操作码 one of: */
#define ARPOP_REQUEST 1 /* request to resolve address */
#define ARPOP_REPLY 2 /* response to previous request */
#define ARPOP_REVREQUEST 3 /* request protocol address given hardware */
#define ARPOP_REVREPLY 4 /* response giving protocol address */
#define ARPOP_INVREQUEST 8 /* request to identify peer */
#define ARPOP_INVREPLY 9 /* response identifying peer */
/*
* The remaining fields are variable in size,
* according to the sizes above.
*/
#ifdef COMMENT_ONLY
u_char ar_sha[]; /* 源硬件地址 sender hardware address */
u_char ar_spa[]; /* 源协议地址 sender protocol address */
u_char ar_tha[]; /* 目标硬件地址 target hardware address */
u_char ar_tpa[]; /* 目标协议地址 target protocol address */
#endif
};
|
实现
在 Linux 系统上, 可以通过 PF_PACKET
创建由用户态程序收发数据链接层数据的 Packet Socket, 从而发送完全自定义的 ARP 报文。但是在基于 BSD 的系统(比如 MacOS) 上, 是不支持 PF_PACKET
类型的 Socket 的,这时候就要利用 BPF(Berkeley Packet Filter)伯克利包过滤器来实现原始链路层数据的收发. —— BPF
Berkeley Packet Filter
数据包过滤器显示为字符特殊设备 /dev/bpfN
(N为0~N, 一台机器上可能会提供多个 bpf 文件)。打开设备后,必须使用 ioctl
调用并结合 BIOCSETIF
, 将文件描述符绑定到特定的网络接口。给定的接口可以由多个侦听器共享,并且每个描述符下面的过滤器将看到相同的数据包流。— man bpf
打开 BPF 设备
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
int openBpf()
{
char _buf[32];
int bfd = -1;
int i = 0;
// 查找一个可用的 BPF 设备
for (i = 0; i < 255; i++)
{
snprintf(_buf, sizeof(_buf), "/dev/bpf%u", i);
bfd = open(_buf, O_RDWR);
if (bfd > 0)
{
break;
}
}
return bfd;
}
|
设置 BPF 文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
int setupBpf(int fd, const char *ifname) {
// ifname 为硬件接口名字, 比如 en0 就代表网卡一
struct ifreq request;
strlcpy(request.ifr_name, ifname, sizeof(request.ifr_name) - 1);
/* 将硬件接口和BPF文件描述符绑定 */
int resp = ioctl(fd, BIOCSETIF, &request);
if (resp < 0) {
perror("BIOCSETIF failed: ");
return -1;
}
/* 返回附加接口下的数据链接层的类型, 也就是返回我们绑定的硬件接口(en0)支持的数据层类型 */
u_int type;
if (ioctl(fd, BIOCGDLT, &type) < 0) {
perror("BIOCGDLT failed: ");
return -1;
}
if (type != DLT_EN10MB) {
// 如果不是支持 10MB 的网卡
printf("unsupported datalink type\n");
return -1;
}
/* 启用即时模式, 启用即时模式后,读取数据包后立即返回。否则, 读取将阻塞, 直到内核 buffer 变满或发生超时 */
int enable = 1;
if (ioctl(fd, BIOCIMMEDIATE, &enable) < 0) {
perror("BIOCSIMMEDIATE failed: ");
return -1;
}
return 0;
}
|
DNS 解析
1
2
3
4
5
6
7
8
9
|
/* 根据域名或IP地址获取实际 IP地址, 并写入到 sockaddr_in 结构体中 */
struct sockaddr_in getsockaddrbyhost(const char *host) {
hostent *h = gethostbyname(host);
struct sockaddr_in addr;
bzero(&addr, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr = *(in_addr *)(h->h_addr);
return addr;
}
|
获取本机 IP地址和 MAC地址
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
int getAddrs(struct sockaddr_in *protocolAddr, u_char *hardwareAddr) {
struct ifaddrs *addrs, *addr;
struct sockaddr_dl hardwareDl;
/* getifaddrs 会返回当前计算机网络接口的信息, 可以看作它会把 ifconfig 命令的内容返给你 */
if (getifaddrs(&addrs) < 0) {
perror("[getifaddrs]");
return -1;
}
addr = addrs;
/* 这里我固定了获取网卡一(en0)的地址 */
while (addr) {
if (strcmp("en0", addr->ifa_name) == 0 && addr->ifa_addr->sa_family == AF_INET)
{
memcpy(protocolAddr, (struct sockaddr_in *)(addr->ifa_addr), sizeof(struct sockaddr_in));
}
if (strcmp("en0", addr->ifa_name) == 0 && addr->ifa_addr->sa_family == AF_LINK)
{
memcpy(&hardwareDl, (struct sockaddr_dl *)(addr->ifa_addr), sizeof(struct sockaddr_dl));
}
addr = addr->ifa_next;
}
freeifaddrs(addrs);
if (!protocolAddr || !hardwareAddr)
{
LOG_D(TAG, "not get ifaddrs");
return -1;
}
memcpy(hardwareAddr, LLADDR(&hardwareDl), hardwareDl.sdl_alen);
return 0;
}
|
发送 ARP 报文
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
void arp(const char *host) {
/* 获取目标机器的IP地址 */
sockaddr_in targetaddr = getsockaddrbyhost(host);
LOG_D(TAG, "target: %s", inet_ntoa(targetaddr.sin_addr));
/* 获取本机的IP地址和MAC地址 */
struct sockaddr_in protocolAddr;
struct sockaddr_dl hardwarAddr;
u_char senderHardwareAddress[ETHER_ADDR_LEN];
if (getAddrs(&protocolAddr, senderHardwareAddress) < 0) {
perror("[getAddrs]");
exit(1);
}
/* ether_header: 14, arp_header: 28 */
int etherSize = 14;
int arpSize = 28;
int packSize = etherSize + arpSize;
char buf[packSize];
bzero(buf, sizeof(buf));
/* 填充以太网头部 */
ether_header_t *eaddr = (ether_header_t *)buf;
static const u_char etherBroadcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
// 目标MAC地址设为广播地址
memcpy(eaddr->ether_dhost, etherBroadcast, 6);
// 帧类型设为 ARP
eaddr->ether_type = htons(ETHERTYPE_ARP);
/* 填充 ARP 请求 */
struct arphdr *arphdr = (struct arphdr *)(buf + etherSize);
// 硬件类型
arphdr->ar_hrd = htons(ARPHRD_ETHER);
// 协议类型
arphdr->ar_pro = htons(ETHERTYPE_IP);
// 硬件地址长度
arphdr->ar_hln = sizeof(senderHardwareAddress);
// 协议地址长度
arphdr->ar_pln = sizeof(targetaddr.sin_addr);
// 操作码 ARPOP_REQUEST 表示请求
arphdr->ar_op = htons(ARPOP_REQUEST);
int offset = sizeof(arphdr->ar_hrd) +
sizeof(arphdr->ar_pro) +
sizeof(arphdr->ar_op) +
sizeof(arphdr->ar_hln) +
sizeof(arphdr->ar_pln) + etherSize;
// 源硬件地址
memcpy(buf + offset, senderHardwareAddress, ETHER_ADDR_LEN);
offset += ETHER_ADDR_LEN;
// 源协议地址
memcpy(buf + offset, &(protocolAddr.sin_addr), 4);
offset += 4;
// 目标硬件地址
memset(buf + offset, 0, ETHER_ADDR_LEN);
offset += ETHER_ADDR_LEN;
// 目标协议地址
memcpy(buf + offset, &(targetaddr.sin_addr), 4);
/* 输出 ARP 请求 */
outputArp(arphdr);
/* 打开 BPF 设备并设置 */
int bfd = openBpf();
if (bfd < 0) {
LOG_D(TAG, "[openBpf] failed");
exit(1);
}
setupBpf(bfd, "en0");
/* 写入数据 */
ssize_t writed = write(bfd, buf, packSize);
if (writed < 0) {
perror("writev failed.");
} else {
LOG_D(TAG, "writed %d", writed);
/* 写入成功之后读取数据 */
readBpf(bfd);
}
close(bfd);
}
|
读取 ARP 报文
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
void readBpf(int fd) {
int bufSize;
/* Returns the required buffer length for reads on bpf files */
if (ioctl(fd, BIOCGBLEN, &bufSize) < 0) {
perror("BIOCGBLEN failed: ");
exit(1);
}
LOG_D(TAG, "BIO Buffer: %d", bufSize);
char re[bufSize];
int finish = 1;
while (finish) {
/* 从 BPF 设备中读取数据 */
ssize_t readed = read(fd, re, bufSize);
if (readed < 0) {
perror("read failed.");
break;
}
else if (readed == 0) {
LOG_D(TAG, "read end.");
break;
}
LOG_D(TAG, "read %d bytes data.", readed);
/* 接收的数据的头部是 bpf_hdr */
const struct bpf_hdr *bpfHeader = (struct bpf_hdr *)re;
LOG_D(TAG, "bpf header tstamp: %", bpfHeader->bh_tstamp);
LOG_D(TAG, "bpf header len: %d", bpfHeader->bh_hdrlen);
LOG_D(TAG, "bpf header data len: %d", bpfHeader->bh_datalen);
LOG_D(TAG, "bpf header cap len: %d", bpfHeader->bh_caplen);
/* 从 re 中取出以太网头部 */
ether_header_t *eaddr = (ether_header_t *)(re + bpfHeader->bh_hdrlen);
u_short etherType = ntohs(eaddr->ether_type);
if (etherType == ETHERTYPE_ARP) {
LOG_D(TAG, "Received ARP");
/* 从 re 中取出ARP数据 */
const struct arphdr *arp = (struct arphdr *)(re + bpfHeader->bh_hdrlen + sizeof(ether_header_t));
/* 由于会收到很多局域网中其他设备发出的 ARP 请求, 所以只接收第一次的 Reply, 表示是对我们发出的 Request 的响应. 更严谨的应该根据 Reply 包中的目标ip地址和目标mac地址是不是我们的地址来过滤 */
if (arp->ar_op == ntohs(ARPOP_REPLY)) {
LOG_D(TAG, "Received ARP Reply");
outputArp(arp);
finish = 0;
}
}
}
}
|
结果
arp 192.168.31.1
target: 192.168.31.1
Hardware type: 1
Protocol type: 2048
Opereation code: 1
Hardware address len: 6
Protocol address len: 4
Source hardware address: 0x88000000:0xe9000000:0xfe000000:0x53000000:0xed000000:0x16000000
Source ip address: 192.168.31.77
Dest hardware address: 0:0:0:0:0:0
Dest ip address: 192.168.31.1
writed 42
BIO Buffer: 4096
Received ARP
Received ARP
Received ARP Reply
Hardware type: 1
Protocol type: 2048
Opereation code: 2
Hardware address len: 6
Protocol address len: 4
Source hardware address: 0x28000000:0x6c000000:0x7000000:0x3c000000:0xca000000:0x8d000000
Source ip address: 192.168.31.1
Dest hardware address: 0x88000000:0xe9000000:0xfe000000:0x53000000:0xed000000:0x16000000
Dest ip address: 192.168.31.77
Request |
Reply |
|
|
完整源码
https://github.com/stefanJi/NetUtitily/blob/master/src/arp.cpp